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Abstract

Over 3.6 million bases of DNA sequence from
chromosome III of the C. eleganshave been deter-
mined. The availability of this extended region
of contiguous sequence has allowed us to analyze
the nature and prevalence of repetitive sequences
in the genome of a eukaryotic organism with a
high gene density.

We have assembled a Repeat Pattern Toolkit
(RPT) to analyze the patterns of repeats occur-
ring in DNA. The tools include identifying sig-
nificant local alignments (utilizing both two-way
and three-way alignments), dividing the set of
alignments into connected components (signify-
ing repeat families), computing evolutionary dis-
tance between repeat family members, construct-
ing minimum spanning trees from the connected
components, and visualizing the evolution of the
repeat families.

Over 7000 families of repetitive sequences were
identified. The size of the families ranged from
isolated pairs to over 1600 segments of similar
sequence. Approximately 12.3% of the analyzed
sequence participates in a repeat element.

Introduction

The genomes of humans and other higher organisms
contain many sequences that are repeated one or more
times. These repetitive elements range from mononu-
cleotide tracts (for example, poly(A) repeats) to large
complex segments (tens of kilobases), and from exact
duplicates to highly-mutated copies (just detectable).
The human genome is well known for the variety and
number of repeated elements. In fact, the most preva-
lent repeat in the human genome—Alu— is about 300
base pairs long and represents about 5-10% of all
the DNA in the genome (Deininger & Schmid 1979;
Britten et al. 1988; Jurka, Walichiewicz, & Milosavlje-
vic 1992). Alu elements appear to be associated with
transcriptionally active genes.
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Some repetitive sequence elements, such as the Line-
1 family in humans, appear to be derived from retro-
viruses. Some copies of both Alu and Line-1 are still
functionally active, producing both RNA and protein
products (McMillan & Singer 1993).

Repetitive elements are also seen in amino acid se-
quences. For example, immunoglobulins are composed
of two copies of both heavy and light chains, which
themselves share two basic sequence motifs. Multiple
copies of this immunoglobulin domain are present in
many cell surface receptors, cell adhesion molecules,
and antibodies.

The study of repeats is important for a variety of
reasons. The presence of repetitive elements makes se-
quence assembly difficult, since a unique ordering of
the contigs may no longer exist. Polymorphic repeats
are also used as physical and genetic markers. In addi-
tion, control and transcriptional elements are present
in multiple copies in the genome, and a study of the re-
peats may aid in identifying them. Most importantly,
repetitive elements may be used to infer the evolution-
ary history of the genome. The distribution of their
prevalence and time of birth may pinpoint catastrophic
events in the evolution of the genome.

The prevalence and diversity of repeats in the
genome leads to a number of biological questions. How
did these repetitive elements arise? What functions do
they play? Are the repeat elements stable? To address
these questions, tools are needed to recognize repeti-
tive elements in anonymous sequence data, and to cat-
egorize and analyze the resulting families of sequence
elements.

Recognizing repetitive sequence elements in genomic
sequence is an example of a fundamental problem in
machine learning, namely, pattern induction from an
anonymous data stream. In the case of molecular se-
quence analysis, no prior knowledge of the length, loca-
tion, number, or characteristics of the repeats is avail-
able. Therefore, general pattern induction methods
need to be developed.

Milosavljevic and Jurka (1993) have used minimum
length encodings to study significant repeats in a se-
quence, thus computing a short representation of a



sequence from an information-theoretic perspective.
Fitch, Smith, and Breslow (1986) have examined the
problem of detecting tandem repeats and analyzing
their evolutionary history. A number of techniques
also exist to identify exact repeats. A simple effi-
cient algorithm utilizes suffix trees (Bieganski et al.
1994). Heuristic algorithms, like BLAST (Altschul et
al. 1990) and FASTA (Pearson & Lipman 1988), also
perform well in detecting repeats with few mutations.
However, none of these fast searching techniques per-
form well for detecting short mutated repeats.

Blaisdell et al. (1993) have systematically studied
significant repeats in an E. coli DNA sequence (length
1.6 million bases). Both small repeats with high copy
number and larger repeats with smaller copy number
are considered significant. They used an algorithm
developed by Leung et al. (1991) for identifying re-
peats. This linear time algorithm relies on finding
repeats with non-mutated blocks possibly connected
by short mutated blocks. The sensitivity of this algo-
rithm would appear to be similar to that of BLAST,
and thus may not be adequate for discovering short,
but significant mutated repeats.

We have adopted a sequence similarity scoring sys-
tem based on a well-defined underlying statistical
model (Altschul 1991; States, Gish, & Altschul 1991).
Using this approach, we have been able to define sta-
tistically significant classes of repeated sequence el-
ements. Furthermore, we have developed tools to
analyze and visualize these classes, which aid in un-
derstanding the complicated relationships between the
constituent elements of these classes. In particular, a
hierarchical view of class relationships is developed to
examine biological evolutionary relationships between
elements.

Over 3.6 million contiguous base pairs of sequence
from C. elegans chromosome III have recently been
determined.! We have focused on this region for our
analysis, since it includes one of the largest contiguous
segment of DNA sequence available (Wilson and others
1994). Experimental studies with reassociation kinet-
ics and electron microscopy have suggested that repeti-
tive elements account for 17% of the C. elegans genome
(Britten & Kohne 1968; Sulston & Brenner 1974;
Wood 1988). Our computational analysis provides an
estimate of approximately 12%. These repeat elements
are diverse, with multiple apparent mechanisms of ori-
gin and evolution.

Methods

We use the term sequence segment to refer to a con-
tiguous section of the DNA sequence. The term repeat
segment refers to a sequence of DNA (of significant

'This is almost a contiguous sequence, with 21 gaps
ranging in size from 30,000 to 483,000 bases with the total
gap size of approximately 2 million bases. Thus, these 3.66
million sequenced bases span a sequence of approximately
5.7 million bases.

length) that occurs more than once in the available
sequenced genome. The repeat segments include seg-
ments both on the plus and minus strands of the DNA.
The frequency of occurrence of a segment 1s referred
to as its copy number. Thus, unique segments have
copy number one, and repetitive elements have a copy
number of at least two.

Significant score

A repeat segment is considered significant if it scores
above a certain threshold. The threshold score is essen-
tially loga N bits, where N is the search space (product
of the lengths of query and the database sequence).
For a self-similarity search of a sequence, N 1s approx-
imately the square of the sequence length.

The statistical theory of maximal local alignments
is well developed, and we judge significance according
to Karlin and Altschul (1990).

A score S (in bits) is considered significant if:
[/7
S > log, — + log, N
P

K depends upon the substitution matrix, and was
upper bounded by 0.4 for our choice of substitution
matrices. p is the probability that the score S occurs
by chance alone. We consider an alignment significant
when p is 0.05. N is L? + L(L — 1)/2, where L is
the total length of the examined sequence (3,655,029)
for the C. elegans. A simple explanation for the value
of N is that we are searching the lower triangle of
the dynamic programming matrix for the plus strand
against the plus strand, and the entire matrix for the
plus strand against the minus strand, and the total
number of starting points for possible alignments in
these matrices is L? + L(L — 1)/2. Thus,

0.4
> log, — + log,(1.5L% — 0.5L
S > og20.05—|— 0g,(1.5 0.5L)
> 3 +log,(2.0 x 10'3)
> 47.2 bits

In addition, since we use the best alignment score
over all the PAM matrices (corresponding to an in-

. . 1
crease in search space), a correction of g7z Inln N

needs to be applied (Altschul 1993). This amounts to
2.5 bits, raising the cutoff to 49.7 bits. Therefore, we
used 49.7 bits as the minimum score for a repeat to be
considered significant.

However, for repeats with copy number greater than
two, a smaller score may be considered significant
(Altschul & Lipman 1990). If two copies of a repeat
with a score of 50 bits are unlikely, then three copies
of a repeat with a score of 36 bits are also unlikely. In
general, for copy number equal to three, N = 7L3/6,
and a total score of 71.4 bits for the best two align-
ments of the three is significant?.

?There are three search matrices to consider: all three



PAM distance

The uniform mutation model assumes that mutations
occur with equal frequency over time and base posi-
tion. The evolutionary distance between two sequence
segments can be estimated using this model (States,
Gish, & Altschul 1991). This mutation model pro-
vides a series of scoring matrices, each corresponding
to an evolutionary distance. The evolutionary distance
between two sequence segments is inferred from the
number of the scoring matrix that maximized the in-
formation content (score) of the alignment. The uni-
form mutation model is an approximation, and there
are some regions of DNA sequence where it does not
hold; however, due to its simplicity it is still widely
used.

PAM is an abbreviation for point accepted muta-
tion. The PAM 1 scoring matrix maximizes the score
for sequences, where each base has suffered an average
of 0.01 mutations. The PAM number can also be re-
garded as a time unit. Thus, PAM 1 is the time taken
for a sequence to achieve one point accepted mutation.

The various PAM matrices are built using a Markov
mutation model. The diagonal probabilities for the
one point accepted mutation probability matrix (M)
are 0.99, and a biased mutation model provides the
probability of transitions (A—G and C—T = 0.006),
and of transversions (A—C, A—=T, C—G, and G=T
= 0.002). The probability matrix corresponding to n
PAM’s is M,, = (My)". The element in the i’* row and
j** column of this matrix is Mpy;;. These probability
matrices are converted to symmetrical log odds score
matrices with scores S;;’s. The score for aligning base
¢ with base j at n PAM’s is Sy;;, and
P Mnji

s My

Snij + Snji = logy P — + log,

iPj Dipi
p; 18 the probability of occurrence of base 7. For the
C. elegans sequence (pg = pr = 0.32 and pc = pg =
0.18). Since the scores should be symmetrical,
1 Moo Mo
Thus, we obtain a scoring matrix (with the scores in
bits) for each PAM distance. Given a local alignment,
one of the PAM matrices provides the best score for
the alignment.® The number of this optimal matrix is
inferred to be the evolutionary distance between the
two segments (involved in the local alignment).

segments on the positive strand (N = L*/6), one segment
on the positive strand and two on the negative strand (N =
L3/2), and two segments on the positive strand and one on
the negative strand (N = L?/2). In summation, the total
search space is N = 7L° /6.

*We use PAM matrices from 1 to 125. Though PAM
matrices with distance larger than 125 can be used, they
provide little information, and our tests failed to find any
significant alignments at greater than PAM 125.

Local Alignment Algorithm

The problem of locating repeated segments is easily re-
duced to the problem of searching a sequence database
for similarity. A number of heuristic tools exist for
this purpose, including BLAST (Altschul et al. 1990),
FASTA (Pearson & Lipman 1988) and FLASH (Cali-
fano & Rigoutsos 1993). Altschul et al. (1994) provide
an excellent review of the issues involved in searching
sequence databases.

BLAST We attempted to identify all local align-
ments by using BLASTN version 1.3.12 with option
—overlap and word size W = 8. Since BLASTN 1is not
guaranteed to work correctly with W=8, we also used
W = 12, and merged the sets of alignments obtained.
All the possible alignments indicated by BLAST were
re-scored using the PAM matrices to establish a PAM
distance for each alignment.

BLASTN is optimized to find nearly identical se-
quence segments rapidly. Our results indicated that
it preferentially found alignments which had low PAM
numbers. This was due both to the default scoring
matrix it utilizes (45 for a match, and —4 for a mis-
match), and its requirement that at least W bases
match exactly (where W is the word size). However,
repeat segments with a high PAM distance may have
a significant score without having an exact match of
W bases.

FLASH is efficient for repeated searches on the same
database; however, we required only a single search
(Califano & Rigoutsos 1993). The code for FLASH
is not available, thus it is difficult to use FLASH on
the C. elegans sequence. We are currently evaluating
the sensitivity and efficiency of FASTA for our repeat
search.

Exhaustive search The limitations of BLASTN ne-
cessitated an exhaustive search for identifying all the
local alignments. Since we were interested in only un-
gapped alignments, this exhaustive search is a special
case of the dynamic programming algorithm (Water-
man 1989). Tt can be easily implemented using O(L)
space. The problem is easily partitioned into sets of
diagonals, which can be handled in parallel on differ-
ent workstations. The sequence (L) being 3.6 Mb long,
the dynamic programming was a major undertaking of
O(L?) = (3.6 x 10°)% = 1.3 x 10'3 operations, which
on a combination of 6 workstations (including SGI
Indigo’s, DEC Alpha 3000/500’s, and SPARCstation
10’s) took 4 days to compute.

We identified all the local alignments by scanning
along each diagonal for the number of matches minus
mismatches exceeding 10 (& 20 bits). We believe this
number (10) is small enough to detect all the signifi-
cant alignments. The set of local alignments is post-
processed to weed out the alignments with insignificant
scores. The best PAM distance and end points for
each alignment are determined, and utilized as input
for building the repeat graph.



Encoding repeat alignments as graphs

A graph G = (V, E) is defined to capture the various
relationships between the repeat segments. The set of
vertices V' is the set of repeat segments. The edges £
represent alignments. The edges are weighted, and the
edge weights correspond to the evolutionary distance
between the sequence segments. There is no edge be-
tween unrelated segments.

Distinct families of repeats correspond to the con-
nected components of this graph. In fact, the con-
nected components that correspond to well-conserved
repeat families should have high connectivity ap-
proaching that of cliques. The connected components
can be identified algorithmically in O(] E]) time. How-
ever, the identification of distinct vertices is somewhat
arbitrary. The local alignment algorithm produces a
pairwise list of sequence segments (along with a score
and distance for each such pair). If we consider all
such sequence segments, we get disjoint, overlapping,
and totally included segments. We need a method to
determine which overlapping sequence segments can
be represented by the same vertex. If we merge seg-
ments into the same vertex generously, we may end up
with one large connected component, and the various
sequence segments involved will bear little similarity.
We represent segments that have at least 90% over-
lap by a single vertex* (i.e. |AN B|/|AU B| > 0.9).
Thus, most vertices in a connected component will be
of similar length.

Fach connected component (C') corresponding to a
repeat family 1s reduced to a minimum spanning tree
(T). The minimum spanning tree presents a succinct
encoding of the evolutionary relationship between seg-
ments (States, Harris, & Hunter 1993).

Consider a single connected component. We
use Kruskal’s algorithm for building the minimum
spanning tree (Corman, Leiserson, & Rivest 1990).
Kruskal’s algorithm sorts the edges by non-decreasing
weight. It considers each edge in order and if the ver-
tices on this edge are not already connected, it includes
this edge in the spanning tree. This has the advan-
tage that the set of trees obtained after the edges with
weight less than w have been considered correspond to
all the evolutionary relationships in the family within
w PAM’s. Each such tree (7},) is reduced to a single
vertex, which represents a common ancestral sequence
for the vertices (sequence segments) in Ty,.5

In other words, we build this tree PAM level by PAM
level. Consider figure 1. The entire sequence is laid
out along the x-axis (the 7' base is at x = i). The
PAM distance is along the y-axis. Each set of vertices
(sequence segments) that are connected by edges with

*This choice is heuristically motivated, and different
overlap criterion provide somewhat different family struc-
tures and total estimates of information duplication.

®In fact, these spanning trees are a form of Steiner trees,
as we are introducing additional vertices (corresponding to
ancestral sequences) into the graph.

weight PAM 1 in the spanning tree is joined by edges
to a common point (an additional vertex is introduced)
at PAM 1, indicating that they evolved from a common
unknown ancestor within one PAM.°

Efficient implementations (using Fibonacci heaps)
of the minimum spanning tree have a complexity of
O(|E]+ |V|log|V]), and even simple implementations
provide O(|F|log|FE]|) running time (Corman, Leiser-
son, & Rivest 1990). Moreover, since our edge weights
are integral and bounded (by the minimum and max-
imum PAM distance), we can use Binsort to sort the
edges to achieve a simple O(|E| + |[V]log|V]) running
time algorithm. The bottleneck, however, is not the
minimum spanning tree implementation but the repeat
discovering step.

Results

A salient point of our analysis was the number of repet-
itive segments and the diversity of families discovered” .
An assessment of the duplication reveals that the se-
quence repeats account for approximately 12.3% of the
region of the C. elegans genome. Figure 2 exhibits the
regions of sequence duplication along the analyzed seg-
ment of chromosome III. The sequence is laid on the
x-axis, and the number of the bases in each block of
10 kilobases that participate in a significant repeat are
plotted on the y-axis. Most of the extensive regions of
the chromosome that appear unique are unsequenced
regions for which no data was available. The regions of
high duplication activity correspond to a combination
of large local repeats (the largest was almost 8 kb), tan-
dem repeats and local inverted repeats. However, the
vast majority of the repeats were scattered randomly
over the chromosome. In summary, about 450 kb of
the 3,655 kb are involved in a duplication event, cor-
responding to 12.3% of the analyzed sequence.

Figure 3 plots the distribution of the sizes of the
various repeat families. About half the families had a
copy number of two, and a fourth of the families had
a copy number of three. This suggests that many re-
peat segments were missed because only a single copy
(or two copies of a repeat that may only be three way
significant) were present in the analyzed region of se-
quence. The region of chromosome III analyzed rep-
resents about 3.6% of the total C. elegans genome. In
addition, one of the gaps in the sequence is known to
be composed almost entirely of repetitive elements. As
more sequence data becomes available, the significance
level for a repeat will rise. Thus, some of the current

6This visualization imposes an ultrametric on the evo-
lutionary distances. If a segment A is related to two other
segments B and C by distance of PAM d, then B and C
are assumed to be related by a distance of at most PAM d.
Thus, each segment has only a single edge emanating from
it, forcing the evolutionary structure to be a tree rather
than a graph.

"Internal structure of tandem repeats was excluded from
the analysis.
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Figure 1: Spanning trees representing evolution. x
range is the entire contiguous sequence about 6 million
bases. (a) A small repeat family with 4 members.
Two members are separated by PAM 1, and these are
connected to a newly introduced vertex at PAM 1. The
x location of the new node is chosen to be the weighted
midpoint of the sequence segments involved. A third
member is connected to the ancestor of the first two
members at PAM 3, and the last member is connected
to the ancestor of the previous three family members
at PAM 7. (b) A larger repeat family with members
all over the chromosome.
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Figure 2: Extent of sequence duplication. The se-
quence is laid out in 10 kb blocks along the x-axis. On
the y-axis is plotted the number of bases of each 10 kb
block, which are involved in a duplication event. For
reference, the 2.2 Mb of contiguous data reported by
Wilson et al. (1994) is the sequence from 2.9 Mb to
5.1 Mb in our numbering scheme.
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Figure 3: The number of repeat segments in each fam-
ily. The repeat families were sorted according to in-
creasing size before plotting.
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Figure 4: A scatter plot of the average score in a repeat
family as a function of the size of the family.
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Figure 5: Evolutionary divergence (average PAM)
in each repeat family. The repeat families were re-
numbered in order of increasing average PAM distance.

borderline repeats will be no longer significant, but
this effect will be overshadowed by the discovery of
new repeats, and we believe that the estimate for the
repeat content of the C. elegans genome will increase
from the current figure of 12%.

A scatter plot of the average score in a family versus
the size of the family in figure 4 reveals that small
families have large variation in the size of the segments
involved in the duplication. The significance levels of
the scores are also evident from the minimum score for
a family. Families with size three or more require a
lower score to be considered significant due to a three-
way alignment. Families with large copy numbers tend
to be composed of small repeats.

The date of a duplication event can be estimated
from the number of substitution events that have ac-
cumulated between copies. Figure 5 shows the distri-
bution of evolutionary divergence as a function of the
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Figure 6: The cumulative amount of information
present in all repeats for a given PAM.

repeat family. A remarkably linear distribution was
observed up to approximately 40 point mutations per
hundred nucleotides (PAM). These results suggest that
sequence duplication events have been occurring at a
constant rate in recent evolution. The decline in the
number of repeat families discovered beyond 40 PAMs
probably represents the limitations of our search tech-
nique rather than an intrinsic biological process. The
search technique is limited by both the small amount
of information available per base in the higher PAM
scoring matrices, and our inability to detect repeat
alignment with high PAMs, since we ignore insertion
and deletion mutations. At 40 PAMs, an alignment on
the average provides 0.67 bits per aligned nucleotide.
To achieve statistical significance of 50 bits, a dupli-
cation must be at least 75 nucleotides long, and even
though about 30 (40% of 75) substitution mutations
must have take place, yet no insertion or deletion mu-
tation must have occurred.

The constant rate of production of repeats is rein-
forced by figure 6, which shows the cumulative infor-
mation content in the repeat families as a function of
the average PAM distance of the family. As expected,
the information content saturates rapidly with increas-
ing PAM distance. In fact, over 90% of the repeat
information is present within an evolutionary distance
of PAM 50. An evolutionary distance of PAM 1 cor-
responds to about 100,000 to 1 million years® Thus,
duplication events within the past 5-50 million years
account for at least 12% of the C. elegans genome.

Figure 7 shows a repeat family with 22 members.
This 1s a local repeat family with each sequence seg-
ment about 85 bases. The entire family is contained

8This assumes a spontaneous mutation rate of 107 to
1071° point substitutions per base per generation. Assum-
ing 100 generations per year, this corresponds to 1077 to
10~% mutations,/base/year or 10° to 10° years for 1 muta-
tion amongst 100 bases. This is only a ballpark number.



40 -
PRk
1
T 1
Sequence Length
(a)
40 -

(b)

Figure 7: Local evolutionary tree. The range of x
1s 2500 bases, and its offset 1s 4.042Mb; thus, this
entire repeat family is present between 4,042,000 and
4,044,500 bases (a) Only edges from the midpoints of
the repeat segments are drawn. (b) The extent of the
sequence involved in the duplication 1s shown. Notice
a majority of the 2500 base segment is covered by 22
repeat segments, each about 85 bases long.

within a section of 2,500 bases. Such repeat families
can be accounted by a local diffusion phenomena. Fig-
ure 1 exhibits two other representative repeat families.
These have members spread over the entire 6 Mb re-
gion, and these cannot be accounted by a model of
local rearrangement.

Discussion

The distribution of family size as a function of family
number exhibits exponential characteristics. 75% of
the total families (7629) had only a single or a double
duplication event (copy number two or three) in the
analyzed region of chromosome IIT (figure 3). If we
extrapolate this distribution to the entire genome, it
is likely that we will discover more members of these
families and other new families. The 3.66 Mb that we
have examined is only a third of the length of chromo-
some 111, and only a thirtieth of the C. elegans genome.
We expect to discover greater than 12% repeats, when
the entire genomic sequence becomes available and is
examined.

The number of true families of repeats is probably
smaller than the number we discovered (7629). Ac-
counting for insertion and deletion mutations will re-
duce the number of families. Manual examination and
annotation of the families will also correct errors due
to the heuristic utilized to form families.

A linear correlation was observed between the evolu-
tionary divergence of the family members and the cu-
mulative number of repeat families (figure 5). The sen-
sitivity of our similarity search breaks down at approx-
imately 40 PAMs. For non-coding genomic sequence,
40 PAMs corresponds to a relatively short time period
(about 4-40 million years). For example, C. briggsae
and C. elegans are thought to have diverged approxi-
mately 30 million years ago, but share no recognizable
sequence similarity in homologous non-coding regions
of the genome (Emmons, Klass, & Hirsh 1979). There-
fore, most of the non-coding duplication events that we
have observed are likely to have occurred in the last 30
to 40 million years. Events leading to the introduction
of repeat families with size 30 or more per genome must
occur every few thousand years, and events leading to
families with small sizes may be quite frequent.

Duplication events occurring in the last 30 to 40 mil-
lion years account for about 12% of the information in
the analyzed segment of chromosome III. Extrapolat-
ing the amount of repetitive sequence in the genome
back in evolutionary time, duplication events occur-
ring after the radiation of the major animal phyla
about 600 million years ago could account for much
of the information present in the C. elegans genome.
Obviously, protein coding regions are being ignored in
this analysis. Nevertheless, our results suggest that
the majority of the non-coding sequence in the C. el-
egans genome 1is derived from duplication events that
have occurred since the higher animals diverged from
each other. However, most of the evolution events that



have occurred more than 40 million years ago cannot
be identified.

The fact that genome sizes of phylogenetically re-
lated species are similar suggests that the overall
genome sizes have been relatively stable; although the
possibility of an uniform growth in genome size among
all contemporary members of the phyla cannot be ex-
cluded. To maintain a stable genome size in the face
of a constant rate of introduction of new sequence,
sequence loss must be occurring at a comparable rate.

Our analysis techniques differ from those employed
by Blaisdell et al. (1993). We employ a more rigor-
ous, but computationally expensive search technique.
We use standardized significance tests employing a
bit-scoring criterion rather than a number of bases
matching-mismatching criterion. The focus of our
work 1s on estimating the total repeat content and
evaluating the evolutionary implications; while Blais-
dell et al. annotated the repeat families they obtained.

A limitation of the current analysis is our inability
to consider repeats that have undergone insertion or
deletion mutations (indels). Repeats with indels cause
problems in three of the constituents of our toolkit:
judging significance, computing evolutionary distance,
and locating the repeats. The statistical theory pro-
vided by Karlin and Altschul (1990) does not extend
to gapped alignments. It is also more difficult to judge
evolutionary distances between repeats that have suf-
fered indels. There are also reasons of computational
efficiency. Unfortunately, our tests with computation-
ally efficient search tools such as BLASTN have showed
that they missed at least some distantly related se-
quence duplications. We have therefore used a full
sequence comparison with a tightly coded inner loop,
vet, the analysis of chromosome III required several
days of compute time on a farm of workstations oper-
ating in parallel. Using a linear space implementation
of the dynamic programming algorithm would allow for
the presence of insertions and deletions, but the inner
loop is more complex, and the overall calculation would
be more time consuming (Waterman & FEggert 1987;
Myers & Miller 1988). We are also examining paral-
lel computing solutions for the search problem. We
expect that the use of more sophisticated search tech-
niques will improve the sensitivity of our similarity
search, but we do not expect it to alter our results
qualitatively.
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